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Abstract

Background: Older adults are at an increased risk of falls with the consequent impacts on the health of the individual and health
expenditure for the population. Smartwatch apps have been developed to detect a fall, but their sensitivity and specificity have
not been subjected to blinded assessment nor have the factors that influence the effectiveness of fall detection been fully identified.

Objective: This study aims to assess accuracy metrics for a novel fall detection smartwatch algorithm.

Methods: We performed a cross-sectional study of 22 healthy adults comparing the detection of induced forward, side (left and
right), and backward falls and near falls provided by a smartwatch threshold-based algorithm, with a video record of induced
falls serving as the gold standard; a blinded assessor compared the two. Three different smartwatches with two different operating
systems were used. There were 226 falls: 64 were backward, 51 forward, 55 left sided, and 56 right sided.

Results: The overall smartwatch app sensitivity for falls was 77%, the specificity was 99%, the false-positive rate was 1.7%,
and the false-negative rate was 16.4%. The positive and negative predictive values were 98% and 84%, respectively, while the
accuracy was 89%. There were 249 near falls: the sensitivity was 89%, the specificity was 100%, there were no false positives,
11% were false negatives, the positive predictive value was 100%, the false-negative predictive value was 83%, and the accuracy
was 93%.

Conclusions: Falls were more likely to be detected if the fall was on the same side as the wrist with the smartwatch. There was
a trend toward some smartwatches and operating systems having superior sensitivity, but these did not reach statistical significance.
The effectiveness data and modifying factors pertaining to this smartwatch app can serve as a reference point for other similar
smartwatch apps.

(JMIR Form Res 2022;6(3):e30121) doi: 10.2196/30121
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Introduction

The risk of falling increases with age. Approximately 30% of
people older than 65 years and living in the community have a
fall at least once a year, with an increase of 5% each year [1].
The incidence is even higher in those living in aged care

facilities [2]. This is a major public health problem leading to
injuries [1,3], loss of quality of life [1,3], loss of independence
[1], placement in assisted-living facilities [4,5] and premature
mortality [3]. Fall-related injuries represent 21% of the total
health care expenses due to injuries [3] and between 0.85% and
1.5% of the total health care expenditure [6]. Lying on the floor
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for a long time after a fall has been associated with serious
consequences, with a greater likelihood of hospitalization,
decline in activities of daily living, placement into long-term
care, and mortality [4,5].

Assistive technologies such as call alarm systems and personal
emergency response systems are increasingly available. This
also holds true for wearables, defined as devices that can be
worn or are in contact with human skin to continuously and
closely monitor an individual’s activities without interrupting
or limiting the users’ motions [7]. These are cost-effective in
reducing hospital admissions when used within emergency
response systems [8,9]. However, these systems are not always
used by consumers, in part, due to difficulties activating them,
including cognitive impairment at the time of, or prior to, the
fall [5].

There is an increasing interest in using sensor systems embedded
in smartwatches for health care purposes [10,11]. This is
particularly the case with falls detection. Although there are
several fall detection devices and apps, none to our knowledge
have been subjected to a blinded study to evaluate effectiveness,
particularly with a variety of smartwatches and smartphones
using different operating systems. This study aims to address
these issues.

Methods

Ethics Committee
The procedures followed in this study were conducted according
to the principles of the World Medical Association Declaration
of Helsinki and were approved by the University of New South
Wales and St Vincent’s Hospital Human Research Ethics
Committee jointly (16/229). The study was independently
audited.

Study Design
This is a cross-sectional blinded study comparing the fall
detection classification provided by a smartwatch algorithm
with a reference standard’s classification, in this case, a video
record of induced falls.

Participants
A total of 22 volunteer participants deemed to be medically
healthy were recruited after satisfying all the inclusion and
exclusion criteria. Participants were recruited by distribution
of a leaflet on the university campus and compensated for their
time. The inclusion criteria were males/females older than 18
years willing and able to provide written informed consent prior
to initiation of any study-related procedures. Participants were
excluded if they had any of the following: disability that may
prevent them from completing the study (eg, severe illness),
being suspected of or having a known allergy to any components
of the smartwatch, having any injury or medical condition that
would be adversely affected by an induced fall, and being
pregnant.

Smartwatch Threshold Algorithm
This study used a threshold-based algorithm programmed for
different smartwatches. The threshold-based algorithm running
on the smartwatch app uses threshold values, or settings, to
automatically detect a fall. The frequency of the smartwatch
accelerometer is 2 kHz with the algorithm of the app collecting
data every 0.01 seconds. The algorithm follows strict rules for
the three phases of a fall, as shown in Figure 1. The algorithm
was supplied by My Medic Watch.

T1 is defined as the time during which the smartwatch is moving
toward the earth (fall time) recording a low acceleration, lower
than 1G. T2 is the time during which the smartwatch hits the
ground, recording a very high positive acceleration for a short
period of time. T3 is the time during which the smartwatch is
“almost” immobile on the ground for a long period of time.
These threshold values are optimized in the app according to
the particular smartwatch and body morphology, including body
weight and height. Optimization was performed during the test
falls.

A near fall can be recognized when all, or one, of the
accelerometer data are close to one of the thresholds, as depicted
in Figure 2. We have arbitrarily defined “close” as 20% lower
than the fall threshold value.
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Figure 1. The threshold-based algorithm settings for fall detection. 1G: force of gravity 9.8 m/s2; accel: acceleration; T1: time of phase 1 of the fall;
T2: time of phase 2 of the fall; T3: time of phase 3 of the fall.

Figure 2. The algorithm threshold settings for the detection of a near fall. 1G: force of gravity 9.8 m/s2; accel: acceleration; T1: time of phase 1 of the
fall; T2: time of phase 2 of the fall; T3: time of phase 3 of the fall.

Protocol
Participants were randomly assigned to have either smartwatch
model A or model C on one wrist and model B or no device on
the other wrist. Model A and C were running one operating
system, while model B was running on a different operating
system. Every smartwatch contained the fall detection app that
was programmed to detect and record falls paired with a
smartphone located at the study site. The same app was used
for each model. The smartwatches and smartphones used one

of two operating systems: android or iOS. Two smartwatches
were connected to iOS and one to Android. The versions of iOS
and Android were the latest available at the time of the test. The
version of the operating system on the smartphone and
smartwatch were the same for all participants. The smartphones
were linked to the smartwatch (according to the operating
system) to communicate stored data of the time-stamped
recorded episodes to secure cloud servers that were then
compared to the video-recorded events.
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Before starting the trial, participants were placed in a crash mat
protected area, the smartwatches were placed on the participants’
wrists, and a helmet was provided to be used during the tests;
no other safety devices were used. Once the trial started, the
smartwatch app was set up in monitoring mode and two rounds
of four falls were induced in the blindfolded participants. A fall
was defined as an event that results in a person coming to rest
inadvertently on the ground, floor, or other lower level. A
nonfall was defined as any event occurring while both the
smartwatch app and the video record were active but excluding
a fall or near fall (defined later). In every round, a frontward
fall, a right side fall, a left side fall, and a backward fall were
induced. These were induced by pushing the participant while
standing. The method of fall induction was the same for all
participants, executed by the same person. The participants were
told of the impending direction of the push. Each assessment
took approximately 5 minutes with 8 falls: 2 backward, 2
forward, 2 right, and 2 left. Additionally, up to 3 test falls were
performed before the first round to ensure the participants were
feeling comfortable with the procedure. Test falls were not
included in the analyses. Further, prior to the test falls and
between the falls, the participants wore the smartwatches and
walked around freely. Near falls where the participant took one
or more steps in the direction of the push without falling were
also recorded, as there is some evidence that they may presage
a fall [12]. This definition is in accord with the traditional
definition as applied to this experimental scenario: “a stumble
event or loss of balance that would result in a fall if sufficient
recovery mechanisms were not activated” [12]. Importantly,
the fall-triggering settings were optimized for each participant
during the test falls. A non–near fall was defined as any event
occurring while both the smartwatch app and the video record
were active but excluding a fall or near fall.

During the fall, the algorithm was collecting the acceleration
data and the time of the fall. The data collected were in three
phases: “prefall” (preparation and walking to the crash mat,
several minutes) as soon as the smartwatches were on the
participants wrist, “induced fall” (8 falls around 5 minutes), and
“post fall,” walking back from the crash matt to the area to
remove the smartwatches. In addition to this, the falls were
recorded by built-in motion-detecting cameras (recording at 50
frames/second) available at the study site, the National Facility
for Human Robot Interaction Research, University of New
South Wales. Motion detection data were used to indicate when
a fall was observed. The video of the falls also contained a
timestamp that was used to compare it with the falls detected
by the smartwatch app. In this case, the video recorded event
was used as a reference standard, and the falls detected by the
smartwatches were compared against it.

After all the falls had been induced, the smartwatches and safety
equipment were removed, and participants were observed for

approximately 10 minutes: the heart rate, blood pressure, and
symptoms (if any) were assessed.

Data Analysis
To perform the analysis of the falls, data were first retrieved
from video records of the built-in motion-detecting cameras
and coded as a fall or near fall by the authors and a person
independent of the conduct of the study. Where there was
disagreement, a majority opinion was taken. These were then
compared independently by an external person with data
retrieved from a fall detection database built to register the falls
detected by the smartwatch algorithm. Each fall was classified
as a true positive if the smartwatch app detected a fall at the
time when the event was recorded on the video, a false positive
if the smartwatch detected a fall event that was not recorded on
the video, a false negative if the smartwatch did not detect a fall
event recorded on the video, and a true negative if neither the
smartwatch nor the video recorded a fall. Near falls were
similarly analyzed. Results were computed for sensitivity,
specificity, positive likelihood ratio, negative likelihood ratio,
positive predictive value, negative predictive value, and
accuracy. CIs for sensitivity, specificity, and accuracy are
“exact” Clopper-Pearson CIs. CIs for the likelihood ratios are
calculated using the “Log method.” To compare fall and near
fall detection by smartwatch model and direction of fall only,
sensitivity data were used with chi-square tests and a
significance value of P<.05. Further data are available on
request. Sample size calculations were not formally performed
beyond an approximate anticipated number of 20 to 25
participants that could be accommodated for the study given
the constraints of the availability of the study site and personnel
time.

Results

Characteristics of the Participants and the Falls
A total of 22 participants were enrolled in the study: 14 (63%)
females and 8 (36%) males; 20 (91%) completed the whole
procedure. Two (9%) females abandoned the study during the
process: one after a soft tissue injury and the other for unstated
reasons. An average of 7.2 falls was performed for each
participant; however, one of the participants withdrew from the
study after having performed 5 sets of 8 falls, and another after
having performed 1 set of 8 falls. Of the induced 226 falls, 64
were backward, 51 were forward, 55 were left sided, and 56
were right sided. Two participants reported postfall self-limiting
symptoms associated with soft tissue injuries, 1 required
medication and physiotherapy, and their symptoms resolved
after 6 weeks.

Demographic characteristics of the participants are shown in
Table 1. With regard to BMI, 1 (6%) female was classified as
underweight, 1 male and 1 female were classified as overweight
(9%), and 1 (6%) male was classified as obese.
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Table 1. Demographic characteristic of the participants.

Weight (kg)Height (cm)Age (years)Gender

5816025Female

5716724Female

6217024Female

4815328Female

5016421Female

6817718Male

4716419Female

6517519Male

5316419Female

6217421Male

6017025Female

5316324Female

4916823Female

6017418Female

6318018Male

8617138Male

5516333Female

11018423Male

5016045Female

6416352Female

6516032Male

7017842Male

Overall Performance of the Algorithm
A total of 12 participants were wearing two smartwatches, model
A device on one wrist and model B on the other wrist; 10
participants were wearing only one smartwatch, model C, on
one wrist. The overall performances of the algorithm,
disregarding the model of the smartwatch, are detailed in Tables
2 and 3. There was no difference in the performance of the
algorithm according to which wrist if both were used. Tables 4
and 5 represent the results of near fall detection and the
associated statistics. The overall test outcomes are summarized
in the following section.

In general, the direction of the fall or near fall did not
significantly influence sensitivity. Nonetheless, there was a

trend for better detection of backward falls: of the 64 backward
falls, 11 were false negatives, giving a sensitivity of 82%, versus
forward falls, of which there were 51 with 12 false negatives,
giving a sensitivity of 76%. Further, there was a significant
difference in fall detection if the fall was to the same side versus
opposite side of the wrist that had the smartwatch (left sided
and right sided sensitivities combined: 92.5% vs 76.3%;
P=.009). The same held true for near falls. If the fall was to the
same side as the wrist with the smartwatch, there was a 95%
sensitivity for left sided falls (55 with 3 false negatives) and
89% sensitivity for right sided falls (56 with 11 false negatives)
versus if the fall was on the opposite side as the wrist with the
smartwatch, there was 84% sensitivity for left sided falls (55
with 9 false negatives) and 80% sensitivity for right sided falls
(56 with 11 false negatives).

Table 2. Fall detection results.

Total, nTest result, nTrue fall status

Positive (fall)Negative (nonfall)

2683 (false positive 1.7%)265 (true negative)Nonfall

226174 (true positive)52 (false negative 16.4%)Fall

494177317Total
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Table 3. Statistics for fall detection.

Value (95% CI)

76.99 (70.95-82.31)Sensitivity (%)

98.88 (96.76-99.77)Specificity (%)

68.78 (22.27-212.39)Positive likelihood ratio

0.23 (0.18-0.30)Negative likelihood ratio

98.31 (94.95-99.44)Positive predictive value (%)

83.60 (80.05-86.61)Negative predictive value (%)

88.87 (85.76-91.50)Accuracy (%)

Table 4. Near fall detection results.

Total, nTest result, nTrue near fall status

3430 (false positive)343 (true negative for all falls, normal falls, and near falls)Non–near fall

249206 (true positive)43 (false negative when near fall 11.1%)Near fall

592206386Total

Table 5. Statistics for near fall detection.

Value (95% CI)

88.86 (85.29-91.82)Sensitivity (%)

100 (98.23-100)Specificity (%)

N/Aa (no false positives)Positive likelihood ratio

0.11 (0.08-0.15)Negative likelihood ratio

100Positive predictive value (%)

82.73 (78.33-86.39)Negative predictive value (%)

92.74 (90.34-94.69)Accuracy (%)

aN/A: not applicable.

Performance by Smartwatch Model
The number of responses for each smartwatch model were
A=186, B=186, and C=122. Model A was used 173 times on
the left wrist and 13 times on the right wrist. As per Table 6,

there were differences among the models according to sensitivity
and specificity, but none were significant. This was also true
of the operating system. Similar results were found for near
falls.

Table 6. Fall detection results by smartwatch models A, B, and C. The direction of the fall did not significantly influence sensitivity in any of the
models.

Value (95% CI)

Model A

78.8 (68.6-86.9)Sensitivity (%)

99 (94.6-100)Specificity (%)

Model B

71.8 (61-81)Sensitivity (%)

98 (93-99.8)Specificity (%)

Model C

82.1 (96.6-91.1)Sensitivity (%)

100 (94.6-100)Specificity (%)
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Discussion

The primary goal of this study was to evaluate the validity of
an algorithm programmed in commercially available
smartwatches to detect induced falls. Our study found that the
algorithm had an overall sensitivity of 77% and specificity of
99%. The false-positive rate was very low at 1.7%, while the
false-negative rate was 16.4%. The positive and negative
predictive values were 98% and 84%, respectively, while the
accuracy was 89%. Falls were more likely to be detected if the
fall was on the same side as the wrist with the smartwatch.
Similar results were found for near falls. There was a trend
toward some smartwatches having superior sensitivity, though
neither this nor the operating system reached statistical
significance.

Several studies have been conducted to assess the performance
of wearable devices for fall detection, mostly by using
smartphones or other specialized self-created wearable devices
[13-15]. However, only a few of these studies have been
performed using commercially available smartwatches [16-19].
In addition, this study is the only one to assess the performance
of a fall detection algorithm in different commercially available
smartwatches with different operating systems using a video
recording system as a gold standard and using blinded data
analysis.

The fall detection algorithm was threshold based—programmed
to send an alert once a predetermined threshold had been
breached. Threshold-based algorithms, as opposed to pattern
recognition methods, are preferred on smartphone operating
systems due to the restrictions on computing and storage
capabilities of the devices [16]. Indeed, pattern recognition
methods are costly and need massive analyses of data, access
to databases, and long training periods.

Casilari and Oviedo-Jimenez [16] tested different algorithms
with an LG W110 smartwatch model R, finding that the fall
detection performance depends on the algorithm used. However,
there were only 4 participants with a total of 40 falls. Sensitivity
ranged from 70% to 100% and specificity from 80% to 100%
depending on the type of fall. Mauldin et al [18] have studied
three different pattern recognition algorithms based on Naive
bayes (NB), support vector machine (SVM), and deep learning
models by using a Microsoft band 2 smartwatch. In this context,
the algorithm tested in our study performed better than their
NB and SVM models in sensitivity and precision, and when
compared with their deep learning model, our algorithm
performed better in precision but not sensitivity. Mauldin et al
[18] also declared in their study that they tested an Android
wear-based commercially available fall detection app
(Rightminder) released on the Google Play store. The sensitivity
was only 50%, and no technical details of this app are publicly
available.

Further, these studies have used small groups of participants
(3-7) performing several falls each (up to 10 per side). From
our experience in laboratory settings, the dynamics of the falls
are affected by repetition, as participants tend to fall in the same
way. We minimized this effect by having a high number of
participants (N=22) repeating each fall only twice per side.

Furthermore, the previous studies asked the participants to fall
rather than having them fall as a result of being pushed
unexpectedly by another person as was done in our study. This
approach more accurately reflects a true fall given the
spontaneity. The differing protocol designs in these studies
make it impossible to accurately compare one against the other.

Our findings suggest that the performance of the algorithm
differs among various brand devices. Indeed, the combined
performance of brand A and C smartwatches on sensitivity and
false-negative rates was higher than the brand B smartwatch.
However, the brand B smartwatch precision and thus the
false-positive rate is better than brands A and C devices. This
is probably related to the differences in the operating systems.
Medrano et al [20] explain that in current smartphone operating
systems such as Android and iOS, it is difficult to configure
specific sampling rates. As the sampling frequencies in both
systems are different, the performance of the algorithm will
likely be influenced by the operating system used. Moreover,
Fudickar et al [21] have investigated the impact of the sampling
frequency of the accelerometer on the performance of different
threshold-based algorithms in smartphones, concluding that a
detection system must deal with the polling frequency of the
accelerometer sensors embedded in the device. No studies have
been performed regarding this issue on smartwatches; however,
it is likely that the situation is the same.

Additionally, our study has found that the performance of the
algorithm could be strongly dependent on the smartwatch model.
According to Silva et al [22], the performance of a fall detection
algorithm could be affected by the quality of the sensors
embedded in the device. Additionally, as the manufacturer can
change the sensors over time, the performance of the algorithm
will also rely on the smartwatch model [16]. This situation could
explain the differences we have found between the smartwatch
models tested, making it difficult to compare with other studies
if they have not used the same smartwatch device and model.

It has been previously reported that the direction of the fall
affects the performance of the algorithm used in smartwatches
[16,18]. In this context, the performance of the algorithm is
largely dependent on which side the fall occurred in relation to
the smartwatch. Our algorithm performs better when the fall
occurs on the same side of the wrist wearing the smartwatch
than when the fall occurs on the opposite side. This is a tendency
observed regardless of the smartwatch model. Mauldin et al
[18] found a similar performance in the three pattern recognition
models they tested. Casilari and Oviedo-Jimenez [16] reported
an overall result for side falls; therefore, it is not possible to
know if they have found the same tendency.

Regarding the back falls, Mauldin et al [18] found their different
algorithm models had poor performance indices in this direction.
This was thought to be a consequence of less wrist movement
in back falls as compared to other directions of falls. However,
our algorithm performed the best on back falls, suggesting that
the intensity of the wrist movement or the impact is not affecting
the algorithm in this fall direction.

Finally, another factor that could affect the performance of the
algorithm in detecting falls in different directions is the
participant’s body habitus. It has been proposed that height and
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weight could affect the performance of the algorithm [23]; thus,
implementing personalized settings according to participants’
characteristics is a way to improve the algorithm sensitivity. To
address these issues of body habitus and smartwatch model, we
deliberately adjusted the algorithm settings during the test falls.
This likely contributes to the positive results and should be
considered in future studies.

Our study has some limitations. First, there was a relatively
small number of participants though not in comparison with
other published studies. Second, not all participants wore a
smartwatch on each arm, potentially influencing the results.
However, only 1 participant was wearing one smartwatch; the
results were essentially unchanged with that participant’s data
removed. Third, our participants were healthy in
contradistinction to the older adult population who would most

likely be using the app. Nonetheless, inducing falls in such
participants would expose them to considerable risk.

Despite these reservations, the smartwatch app performed well
in comparison to studies of other apps and under more rigorous
conditions with more stringent analyses, yielding an accuracy
of 89%. Indeed, the field of physical activity sensors generally
accepts an accuracy of 70% to 80% [24]. Our future research
will be focused on investigating the performance of the
algorithm in different smartwatch models by using personalized
settings. Moreover, head-to-head studies of fall detection devices
in smartwatches using real-world participants and settings are
likely to improve available evidence concerning the
effectiveness of these devices for consumers such as older adults
and regulatory or licensing bodies.
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